EXERCISES

1. The Main Theorem of Galois Theory

- 1. Determine the irreducible polynomial for $i + \sqrt{2}$ over Q.
- **2.** Prove that the set $(1, i, \sqrt{2}, i\sqrt{2})$ is a basis for $\mathbb{Q}(i, \sqrt{2})$ over \mathbb{Q} .
- 3. Determine the intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- 4. Determine the intermediate fields of an arbitrary biquadratic extension without appealing to the Main Theorem.
- 5. Prove that the automorphism $\mathbb{Q}(\sqrt{2})$ sending $\sqrt{2}$ to $-\sqrt{2}$ is discontinuous.
- **6.** Determine the degree of the splitting field of the following polynomials over \mathbb{Q} . (a) $x^4 1$ (b) $x^3 2$ (c) $x^4 + 1$
- 7. Let α denote the positive real fourth root of 2. Factor the polynomial $x^4 2$ into irreducible factors over each of the fields \mathbb{Q} , $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(\sqrt{2},i)$, $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\alpha,i)$.
- **8.** Let $\zeta = e^{2\pi i/5}$.
 - (a) Prove that $K = \mathbb{Q}(\zeta)$ is a splitting field for the polynomial $x^5 1$ over \mathbb{Q} , and determine the degree $[K : \mathbb{Q}]$.
 - (b) Without using Theorem (1.11), prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.
- **9.** Let K be a quadratic extension of the form $F(\alpha)$, where $\alpha^2 = a \in F$. Determine all elements of K whose squares are in F.
- Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Determine $[K : \mathbb{Q}]$, prove that K is a Galois extension of \mathbb{Q} , and determine its Galois group.
- 11. Let K be the splitting field over \mathbb{Q} of the polynomial $f(x) = (x^2 2x 1)(x^2 2x 7)$. Determine $G(K/\mathbb{Q})$, and determine all intermediate fields explicitly.
- 12. Determine all automorphisms of the field $\mathbb{Q}(\sqrt[3]{2})$.
- 13. Let K/F be a finite extension. Prove that the Galois group G(K/F) is a finite group.
- **14.** Determine all the quadratic number fields $\mathbb{Q}[\sqrt{d}]$ which contain a primitive pth root of unity, for some prime $p \neq 2$.
- 15. Prove that every Galois extension K/F whose Galois group is the Klein four group is biquadratic.
- 16. Prove or disprove: Let f(x) be an irreducible cubic polynomial in $\mathbb{Q}[x]$ with one real root α . The other roots form a complex conjugate pair β , $\overline{\beta}$, so the field $L = \mathbb{Q}(\beta)$ has an automorphism σ which interchanges β , $\overline{\beta}$.
- 17. Let K be a Galois extension of a field F such that $G(K/F) \approx C_2 \times C_{12}$. How many intermediate fields L are there such that (a) [L:F] = 4, (b) [L:F] = 9, (c) $G(K/L) \approx C_4$?
- 18. Let $f(x) = x^4 + bx^2 + c \in F[x]$, and let K be the splitting field of f. Prove that G(K/F) is contained in a dihedral group D_4 .
- 19. Let $F = \mathbb{F}_2(u)$ be the rational function field over the field of two elements. Prove that the polynomial $x^2 u$ is irreducible in F[x] and that it has two equal roots in a splitting field.